PERI INSTITUTE OF TECHNOLOGY DEPARTMENT OF ECE

Two days National Workshop On Communication & Image Processing Using Matlab "CIPM 2017"

MATLAB EXERCISE -3

Basic Syntax and Command-Line Exercises

The following exercises are meant to be answered by a single MATLAB command. The command may be involved (i.e., it may use a number of parentheses or calls to functions) but can, in essence, be solved by the execution of a single command. If the command is too complicated, feel free to break it up over two or more lines.

- 1. Create a vector of the even whole numbers between 31 and 75.
- 2. Let $x = [2 \ 5 \ 1 \ 6]$.
 - a. Add 16 to each element
 - b. Add 3 to just the odd-index elements
 - c. Compute the square root of each element
 - d. Compute the square of each element
- 3. Let $x = [3 \ 2 \ 6 \ 8]$ ' and $y = [4 \ 1 \ 3 \ 5]$ ' (NB. $x \ and \ y \ should be column vectors).$
 - a. Add the sum of the elements in x to y
 - b. Raise each element of ${\bf x}$ to the power specified by the corresponding element in ${\bf y}$.
 - c. Divide each element of y by the corresponding element in x
 - d. Multiply each element in x by the corresponding element in y, calling the result "z".
 - e. Add up the elements in z and assign the result to a variable called "w".
 - f. Compute x'*y w and interpret the result
- 4. Evaluate the following MATLAB expressions by hand and use MATLAB to check the answers

```
a. 2 / 2 * 3
```

b.
$$6 - 2 / 5 + 7 ^ 2 - 1$$

- c. $10 / 2 \setminus 5 3 + 2 * 4$
- d. 3 ^ 2 / 4
- e. 3 ^ 2 ^ 2
- f. 2 + round(6 / 9 + 3 * 2) / 2 3
- g. 2 + floor(6 / 9 + 3 * 2) / 2 3
- h. 2 + ceil(6 / 9 + 3 * 2) / 2 3
- 5. Create a vector x with the elements ...

```
a. 2, 4, 6, 8, ...
```

- b. 10, 8, 6, 4, 2, 0, -2, -4
- c. 1, 1/2, 1/3, 1/4, 1/5, ...
- d. 0, 1/2, 2/3, 3/4, 4/5, ...

6. Create a vector x with the elements,

$$x_n = (-1)^{n+1}/(2n-1)$$

Add up the elements of the version of this vector that has 100 elements.

- 7. Write down the MATLAB expression(s) that will
 - a... compute the length of the hypotenuse of a right triangle given the lengths of the sides (try to do this for a vector of side-length values).
 - b. ... compute the length of the third side of a triangle given the lengths of the other two sides, given the cosine rule

$$c^2 = a^2 + b^2 - 2(a)(b)\cos(t)$$

where t is the included angle between the given sides.

- 8. Given a *vector*, t, of length n, write down the MATLAB expressions that will correctly compute the following:
 - a. $ln(2 + t + t^2)$
 - b. $e^{t}(1 + \cos(3t))$
 - c. $cos^2(t) + sin^2(t)$
 - d. $tan^{-1}(1)$ (this is the *inverse* tangent function)
 - e. cot(t)
 - f. $sec^{2}(t) + cot(t) 1$

Test that your solution works for t = 1:0.2:2

- 9. Plot the functions x, x^3 , e^x and e^{x^2} over the interval 0 < x < 4 ...
 - a. on rectangular paper
 - b. on semilog paper (logarithm on the y-axis)
 - c. on log-log paper

Be sure to use an appropriate mesh of x values to get a smooth set of curves.

10. Make a good plot (i.e., a non-choppy plot) of the function

$$f(x) = \sin(1/x)$$

for 0.01 < x < 0.1. How did you create x so that the plot looked good?

11. In polar coordinates (r,t), the equation of an ellipse with one of its foci at the origin is

$$r(t) = a(1 - e^2)/(1 - (e)\cos(t))$$

where a is the size of the semi-major axis (along the x-axis) and

e is the eccentricity. Plot ellipses using this formula, ensuring that the curves are smooth by selecting an appropriate number of points in the angular (t) coordinate. Use the command **axis equal** to set the proper axis ratio to see the ellipses.

12. Plot the expression (determined in modelling the growth of the US population)

$$P(t) = 197,273,000/(1 + e^{-0.0313(t - 1913.25)})$$

where t is the date, in years AD, using t = 1790 to 2000. What population is predicted in the year 2020?